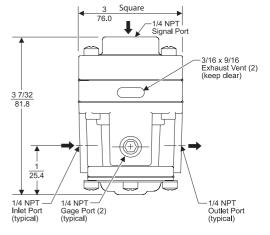
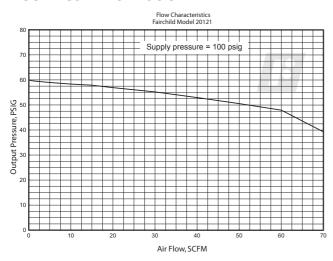


- The Model 2000 Pneumatic Volume Booster converts a low flow signal to a high flow output. It is ideally suited for a variety of applications including the operation of air systems that require rapid valve or cylinder action.
- A balanced Supply Valve minimizes the effect of supply pressure variation.
- An Aspirator Tube minimizes downstream pressure droop under flow conditions.
- Large Supply and Exhaust Valves provide high forward and exhaust flows.
- Soft Supply and Exhaust Valve Seats minimize air consumption.
- Small signal volume assures rapid response to pressure variation.
- A separate Control Chamber isolates the Diaphragm from the main flow to eliminate hunting and buzzing.
- Unit construction lets you service the unit without removing it from the line.


Operating Principles

When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens.

Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the force of the signal pressure that acts on the top of the Signal Diaphragm balances with the force of the output pressure that acts on the bottom of the Control Diaphragm to close the Supply Valve.


When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Because the Poppet Valve is closed, pressure flows down the Connecting Tube to the bottom of the Motor Diaphragm. This pressure keeps the Supply Valve tightly closed while in the exhaust mode. The Poppet Valve opens and excess output pressure exhausts through the vent in the side of the unit until it reaches the setpoint.

Specifications

Maximum Supply Pressure

250 psig, [17.0 BAR], (1700 kPa)

Flow Capacity (SCFM)

40 (68 m^3 /HR) @ 100 psig, [7.0 BAR], (700 kPa) supply & 20 psig, [1.5 BAR], (150 kPa) setpoint

Exhaust Capacity (SCFM)

16 (27.2 m³/HR) where downstream pressure is 5 psig, [.35 BAR], (35 kPa) above 20 psig, 1.5 BAR], (150 kPa) setpoint

Maximum Signal or Output Pressure

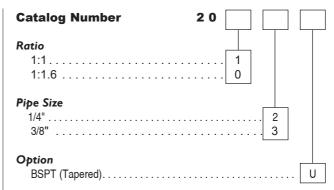
150 psig, [10.0 BAR], (1000 kPa)

Supply Pressure Effect

Less than 0.1 psig, [.007 BAR], (.7 kPa) for 100 psig, [7.0 BAR], (700 kPa) change in supply pressure

Sensitivity

Less than 1" (2.54 cm) Water Column


Ambient Temperature

-40° F to +200°F, (-40° C to +93° C)

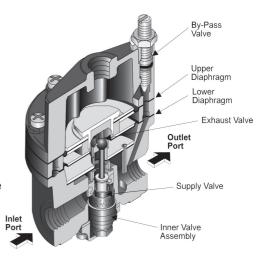
Materials of Construction

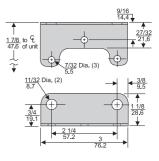
Body and Housing Zinc Diaphragms Nitrile on Dacron

Catalog Information

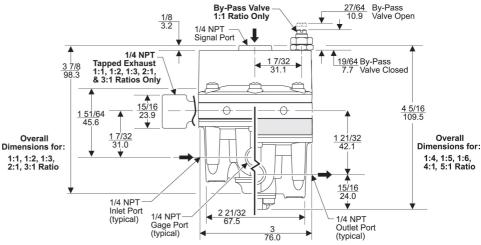
Installation

For installation instructions, refer to the Fairchild Model 2000 Pneumatic Volume Booster Installation, Operation and Maintenance Instructions, IS-20002000.

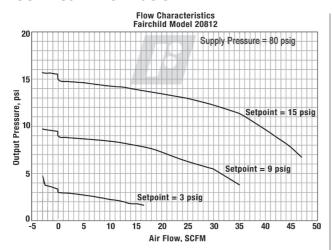



- The Model 20 Pneumatic High Capacity Volume Booster uses a pneumatic input signal to accurately control output pressure
- A balanced Supply Valve minimizes the effects of supply pressure variation
- Aspirator Tube compensates downstream pressure droop under flowing conditions
- Optional Adjustable By-Pass Needle Valve option includes bubble tight exhaust valve allows tuning for optimum dynamic response (1:1 ratio only) and cycle free operation with valve positioners
- Optional Fixed Negative Bias for pneumatic signal devices that cannot be adjusted to zero signal pressure
- A separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing
- Unit construction allows servicing without removal
- · Mounting Bracket available
- Canadian Registration Number (CRN)
 Certification for all territories and provinces

Operating Principles


The Model 20 Booster is a pneumatic device capable of high flow and exhaust capacity. This device uses a force balance system to control the movement of the supply and exhaust valves.

At set point, the force due to signal pressure that acts on the top of the Upper Diaphragm balances with the force due to output pressure acting on the bottom of the Lower Diaphragm.



Model 20 Mounting Bracket Kit P/N 09921 (Zinc Plated Steel) (sold separately)

Installation

For installation instructions, refer to the Fairchild Model 20 High Capacity Volume Booster Installation, Operation and Maintenance Instructions, IS-20000020.

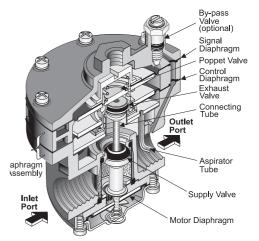
- ¹ For 1:1, 1:2, 2:1, 1:3 & 3:1 Ratios Only.
- ² Maximum Supply Pressure 75 psig, [5.0 BAR], (500 kPa). For 1:1 Ratio Only. Not Available with I Option.
- ³ Negative Bias Fixed at 3.5 psig + 0.5 psig.
- ⁴ Not Available with Y Option. For 1:1 Ratio Only.
- ⁵ BSPP Threads in Inlet, Outlet, Bonnet & Exhaust Ports Only. Others BSPT.

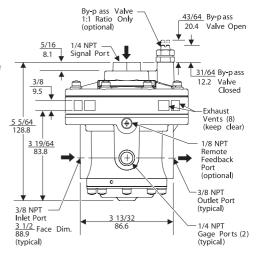
Catalog Information

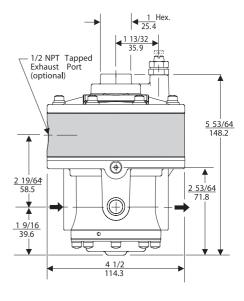
Catalog Number	208 -	-		
Ratio		\top	T	\top
1:1		1		
1:2		2		
1:3		3		
2:1		4		
3:1		5		
1:4		6		
4:1		7		
1:5		8		
5:1		9		
1:6		10		
Pipe Size				
1/4" NPT			2	
3/8" NPT			3	
1/2" NPT			4	
Options				
Silicone Elastomers ²				Α
Tapped Exhaust ¹				E
BSPP (Parallel)⁵				Н
By-Pass Valve⁴				1
Viton Elastomers ¹				J
Non-Relieving ¹				N
BSPT (Tapered)				U
Negative Bias ^{1,3}				Υ

Specifications

Specifications					SIGNAL	:OUTP	UT			
Ratio	1:1	1:2	1:3	1:4	1:5	1:6	2:1	3:1	4:1	5:1
Maximum psig	150	150	150	150	150	150	75	50	37.5	30
Output [BAR]	[10.0]	[10.0]	[10.0]	[10.0]	[10.0]	[10.0]	[5.0]	[3.5]	[2.6]	[2.0]
Pressure (kPa) Maximum psig	(1000)	(1000) 250	(1000) 250	(1000) 250	(1000) 250	(1000) 250	(500) 250	(350) 250	(260) 250	(200) 250
Maximum psig Supply [BAR]	[17.0]	250 [17.0]	250 [17.0]	250 [17.0]	[17.0]	250 [17.0]	250 [17.0]	250 [17.0]	250 [17.0]	250 [17.0]
Pressure (kPa)	(1700)	(1700)	(1700)	(1700)	(1700)	(1700)	(1700)	(1700)	(1700)	(1700)
Flow Capacity SCFM, (m³/HR)										
100 psig, [7.0 BAR], (700 kPa) supply,	45	45	45	45	45	45	45	45	45	45
20 psig, [1.5 BAR], (150 kPa) output.	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)	(76.5)
Exhaust Capacity SCFM, (m³/HR) Downstream Pressure 5 psig, [.35 BAR],	11	11	11	7.5	7.5	7.5	11	11	7.5	7.5
(35 kPa) above output pressure set	(18.7)	(18.7)	(18.7)	(12.8)	(12.8)	(12.8)	(18.7)	(18.7)	(12.8)	(12.8)
point of 20 psig, [1.5 BAR], (150 kPa).	, ,	,	,	,	,	,	,	,	,	,
Sensitivity	1/4"	1/2"	3/4"	1"	1-1/4"	1-1/2"	1/2"	1/2"	3/4"	3/4"
(water column)	(.64 cm)	(1.27 cm)	(1.9 cm)	(2.54 cm)	(3.18 cm)	(3.8 cm)	(1.27 cm)	(1.27 cm)	(1.9 cm)	(1.9 cm)
Ratio Accuracy	1.0	1.0	1.0	2.0	2.0	2.0				
% of 100 psig, [7.0 BAR], (700 kPa) output span % of output span with 100 psig[7.0 BAR],	1.0	1.0	1.0	2.0	2.U -	2.U -	2.0	2.0	2.0	2.0
(700 kPa) input span										
Supply Pressure Effect psig	0.10	0.20	0.30	0.40	0.50	0.60	0.10	0.10	0.10	0.10
for change of 100 psig, [BAR]	[.007]	[.014]	[.021]	[.028]	[.034]	[.041]	[.007]	[.007]	[.007]	[.007]
[7.0 BAR], (700 kPa). (kPa) Ambient Temperature °F	(0.7) -40 to	(1.4) -40 to	(2.1) -40 to	(2.8) -40 to	(3.4) -40 to	(4.1) -40 to	(0.7) -40 to	(0.7) -40 to	(0.7) -40 to	(0.7) -40 to
Ambient Temperature °F	200	200	200	-40 to 200	200	-40 to 200	-40 to 200	-40 to 200	200	-40 to
°C	-40 to	-40 to	-40to	-40 to	-40to	-40to	-40to	-40 to	-40 to	-40 to
	93.3	93.3	93.3	93.3	93.3	93.3	93.3	93.3	93.3	93.3
Materials of Construction	Body &	Housing .						7inc DI		uminum
	1									
Hazardous Locations					2 for gas					
		22 for du			-	•		-		

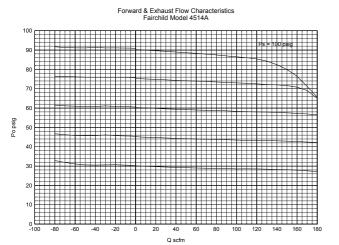



- Five signal to output ratios meet most control element requirements.
- Control sensitivity of 1" water column allows use in precision applications.
- Large Supply and Exhaust Valves provide high forward and exhaust flows.
- Soft Supply and Exhaust Valve seats minimize air consumption.
- A balanced Supply Valve minimizes the effect of supply pressure variation.
- An Aspirator Tube compensates down stream pressure droop under flow conditions.
- A separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing.
- Optional remote feedback port minimizes pressure drop at final control element under flow conditions.
- Optional Adjustable By-Pass Needle Valve option includes bubble tight exhaust valve allows tuning for optimum dynamic response (1:1 ratio only) and cycle free operation with valve positioners
- Unit construction lets you service the Model 4500A without removing it from the line.
- Canadian Registration Number (CRN) certification for all territories and provinces.


Operating Principles

When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the force of the signal pressure that acts on the top of the Signal Diaphragm balances with the force of the output pressure that acts on the bottom of the Control Diaphragm to close the Supply Valve.

When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Because the Poppet Valve is closed, pressure flows down the Connecting Tube to the bottom of the Motor Diaphragm. This pressure keeps the Supply Valve tightly closed while in the exhaust mode. The Poppet Valve opens and excess output pressure exhausts through the vent in the side of the unit until it reaches the setpoint.



Specifications

	RATIO	1:1	1:2	1:3	2:1	3:1
Maximum Output Pressure	psig [BAR] (kPa)	150 [10.0] (1000)	150 [10.0] (1000)	150 [10.0] (1000)	75 [5.0] (500)	50 [3.5] (350)
Maximum Supply Pressure	psig [BAR] (kPa)	250 [17.0] (1700)	250 [17.0] (1700)	250 [17.0] (1700)	250 [17.0] (1700)	250 [17.0] (1700)
Flow Capacity 100 psig, [7.0 BAF (700 kPa) supply, 20 psig, [1.5 BAR (150 kPa) setpoin	SCFM	150 (255)	150 (255)	150 (255)	150 (255)	150 (255)
Exhaust Capacity Downstream Pres 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR] (150 kPa) setpoin	SCFM , m³/HR	40 (65.2)	40 (65.2)	40 (65.2)	40 (65.2)	40 (65.2)
Setpoint Water Column	(cm)	1" (2.54)	2" (5.08)	3" (7.62)	2" (5.08)	2" (5.08)
Ratio Accuracy % of 100 psig, [7.0 (700 kPa) output s	-	3.0	3.0	3.0		
% of output span 100 psig, [7.0 BAF (700 kPa) input sp	₹],				3.0	3.0
Supply Pressure Effect	psig [BAR] (kPa)	0.10 [.007] (0.7)	0.20 [.014] (1.4)	0.30 [.021] (2.1)	0.10 [.007] (0.7)	0.10 [.007] (0.7)

Ambient Temperature

-40°F to 200°F, (-40°C to 93.3°C)

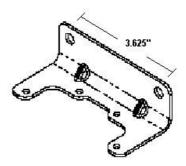
Hazardous Locations

Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups IIA and IIB and Zones 21 and 22 for dust atmospheres

Materials of Construction

materiale of contraction	
Body and Housing A	uminum
Trim Zinc Plated Stee	el, Brass
DiaphragmNitrile or	Dacron

Catalog Information


Catalog Number

Dest			4
Ratio			
1:1	1		
1:2	2		
1:3	3		
2:1	4		
3:1	5		
Pipe Size			
3/8" NPT		3	
1/2" NPT		4	
3/4" NPT		6	
Options			\perp
Tapped Exhaust			E
By-pass Valve ¹			
Feedback			P
BSPT (Tapered)			U
BSPP (Parallel) ²			Н
Viton Elastomers ³			J
Stainless Steel Trim			S

Installation

For installations instructions, refer to the corresponding *Fairchild Model 4500A Pneumatic Volume Booster Instruction, Operation and Maintenance Instructions*. IS-2004500A.

Model 4500A Mounting Bracket Kit P/ N 20555-1 zinc plated (sold separately)

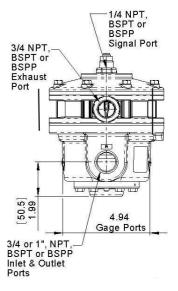
¹ For 1:1 Ratio Only

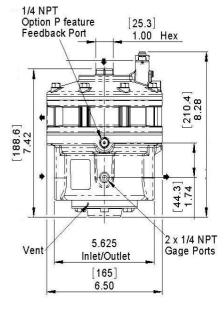
² BSPP Threads in Inlet, Outlet, Exhaust & Bonnet Ports Only. Others BSPT

³ Available on 1:1, 1:2 and 2:1 Only

The Fairchild Model 4800 volume booster is specifically designed to be used in conjunction with valve positioners on large control valve actuators to provide faster response than possible with the valve positioner alone. Deadband within the operation of the volume booster allows the positioner to make small incremental valve positioner changes in a highly stable manor without activating the volume booster valves. The integral bypass valve provides a means to control the response of the booster to match variations in valve positioner and actuator sizes.

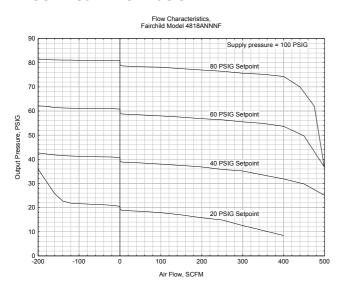
Features


The Model 4800 volume booster is a rugged precision instrument with key features providing reliable, efficient and stable operation. These include:


- Fixed deadband between the operation of the supply valve and exhaust valve for accurate and stable valve positioning.
- Integral bypass needle valve to optimize response time and stability.
- Soft seat supply and exhaust valves for leak free operation and prevent hunting with feed & bleed positioners
- Pressure balanced supply valve maintains deadband specification.
- Damped diaphragm control chamber protects valves from damaging oscillation.
- Two accessory ports connected to the outlet chamber.
- Tapped exhaust port for exhaust air or for incorporation of a sliencer.
- Canadian Registration Number (CRN)
 Certification for all territories and provinces

Operating Principles

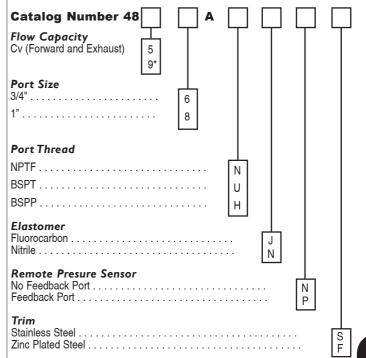
When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the force of the signal pressure that acts on the top of the Signal Diaphragm balances with the force of the output pressure that acts on the bottom of the Control Diaphragm to close the Supply Valve.


When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Because the Poppet Valve is closed, pressure flows down the Connecting Tube to the bottom of the Motor Diaphragm. This pressure keeps the Supply Valve tightly closed while in the exhaust mode. The Poppet Valve opens and excess output pressure exhausts through the vent in the side of the unit until it reaches the setpoint.

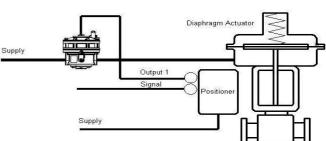
Specifications (1:1 Ratio)

-	•			
Maximum Out	150 psig	[10.0	0 BAR] 1000kPa	
Maximum Sup	250 psig	[17.	0 BAR] 1700kPa	
Flow Coefficie	nt Chart			
Flow Option	Port Size	Forward	Cv	Exhaust Cv
5	3/4" or 1"	5		5
9	1"	9		9
Flow Capacity @ 100 psig, (700 kPa) supply, 20 psig, [1.5 BAR], (150 kPa) setpoint.		500 S	CCIVI	850 m3/hr
[1.5 BAR], (150 kPa) setpoint. Exhaust Capacity @ Downstream Pressure 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR], (150 kPa)		100 S	CFM	170 m3/hr
setpoint.				
Ratio Accuracy % of 100 Psi output pan.		0.5	5%	
Supply Pressure Effect for 100 psi [7 BAR] 700 kPa change in supply		0.10 psi	[.00	7 BAR] 0.7 kPa

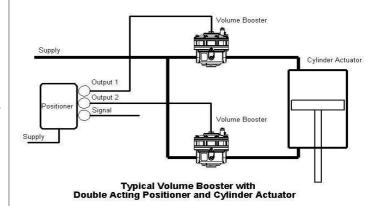
Ambient Temperature Hazardous Locations


Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups IIA and IIB and Zones 21 and 22 for dust atmospheres

-40°F to 200°F, (-40°C to 93.3°C)


Materials of Construction

Body and Housing.AluminumTrim.Zinc Plated SteelDiaphragm.Nitrile on Dacron
Mounting Bracket


Catalog Information

Typical Volume Booster with Single Acting Positioner and Diaphragm Actuator

Model 4800A

Volume Booster Model 4900A

The Fairchild Model 4900A volume booster is a precision pneumatic valve designed for demanding applications requiring the ultimate in sensitivity, accuracy, and flow capacity. The booster is designed with very low deadband between the operation of the supply valve and exhaust valve and achieves superb pressure control characteristics between forward flow and exhaust flow conditions. The high capacity exhaust valve is very usefull in dynamic dual flow direction applications producing high reverse flow conditions.

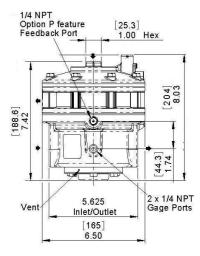
Features

- Very low deadband between the operation of the supply valve and exhaust valve.
- High capacity exhaust valve provides efficient dynamic reverse flow.
- Large area diaphragms provide high accuracy, sensitivity and excellent low pressure performance.
- Soft seat supply and exhaust valves provide efficient leak free operation.
- Pressure balanced supply valve prvents changes in control characteristics.
- Damped diaphragm control chamber provides stable operation and protects valves from damaging oscillation under high flow conditions.
- Two accessory ports connected to the outlet chamber
- Tapped exhaust port for exhaust or for incorporation of a silencer.
- Canadian Registration Number (CRN)
 Certification for all territories and provinces

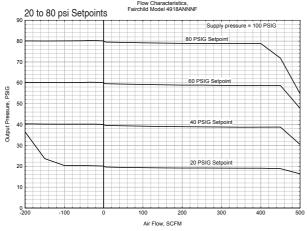
Operating Principles

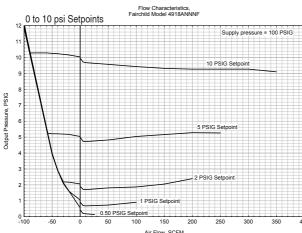
When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the force of the signal pressure that acts on the top of the Signal Diaphragm balances with the force of the output pressure that acts on the bottom of the Control Diaphragm to close the Supply Valve.

When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Because the Poppet Valve is closed,


pressure flows down the Connecting Tube to the bottom of the Motor Diaphragm. This pressure keeps the Supply Valve tightly closed while in the exhaust mode. The Poppet Valve opens and excess output pressure exhausts through the vent in the

side of the unit until it reaches the setpoint.

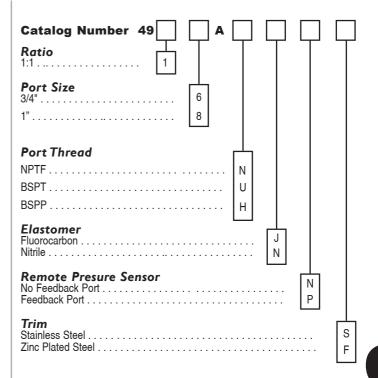

BSPT or BSPP Signal Port BSPP Exhaust Port

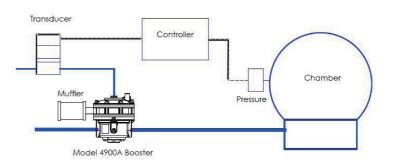

3/4 or 1", NPT, BSPP Inlet & Outlet Ports

1/4 NPT,

Specifications (1:1 Ratio)

Maximum Output Pressure	150 psig [10.0 BAR] 1000kPa
Maximum Supply Pressure	250 psig [17.0 BAR] 1700kPa
Cv	9 (Forward) 9 (Exhaust)
Flow Capacity @ 100 psig, (700 kPa) supply, 20 psig, [1.5 BAR], (150 kPa) setpoint.	500 SCFM 850 m3/hr
Exhaust Capacity @ Downstream Pressure 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR], (150 kPa) setpoint.	100 SCFM 170 m3/hr
Ratio Accuracy % of 100 Psi output span.	0.5%
Supply Pressure Effect for 100 psi [7 BAR] 700 kPa change in supply	0.10 psi [.007 BAR] 0.7 kPa
Ambient Temperature	-40°F to 200°F, (-40°C to 93.3°C)


Hazardous Locations


Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups IIA and IIB and Zones 21 and 22 for dust atmospheres

Materia	le of	Constr	uction

Materials of Construction	
Body and Housing	Aluminum
Trim	Zinc Plated Steel
Diaphragm	Nitrile on Dacron

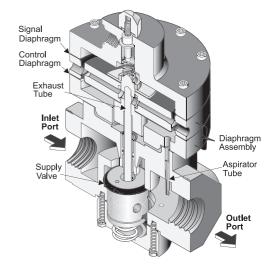
Catalog Information

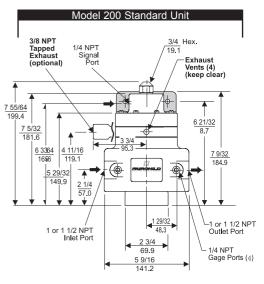
Chamber Pressure Control

Installation

For installations instructions, refer to the corresponding Fairchild Model 4900A Pneumatic Volume Booster Instruction, Operation and Maintenance Instructions, IS-2004900A.

4900A

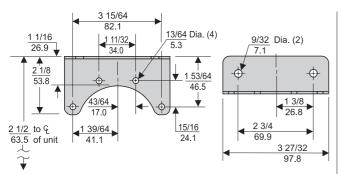

The Model 200 Pneumatic Volume Booster reproduces a pneumatic signal in a 1:1 ratio. It is ideally suited for systems that require input isolation or increased forward flow capacity.


- Control sensitivity to 1" water column variation.
- Large Supply and Exhaust Valves provide high forward and exhaust flows.
- A balanced Supply Valve minimizes the effect of supply pressure variation.
- An Aspirator Tube minimizes downstream pressure droop under flow conditions.
- A separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing.
- Optional Increased Sensitivity configuration with larger Control Diaphragm for more precision control at low setpoints.
- Unit construction lets you service the Model 200 without removing it from the line.
- · Mounting Bracket is available
- Canadian Registration Number (CRN)
 Certification for all territories and provinces

Operating Principles

When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the downward force of the signal pressure that acts on the top of the Signal Diaphragm balances with the upward force of the output pressure that acts on the bottom of the Control Diaphragm.

When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Excess output pressure exhausts through the Vents in the side of the unit until it reaches the setpoint.



Model 200 with Increased Sensitivity Option (L) 3/8 NPT Tapped Exhaust (optional) 1/4 NPT Signal (optional) 0 51/2 0 (keep clear) 1 or 1 1/2 NPT Inlet Port 1 or 1 1/2 NPT Inlet Port 1 or 1 1/2 NPT Gage Port (4)

Mounting Bracket: 10311

Model 200 Booster Kits & Accessories

Specifications

Maximum Supply Pressure

250 psig, [17.0 BAR], (1700 kPa)

Flow Capacity

1800 SCFM (3058 \rm{m}^3/HR) @ 150 psig, [10.0 BAR], (1000 kPa) supply, 20 psig, [1.5 BAR], (150 kPa) set point

Exhaust Capacity

65 SCFM (110.5 m³/HR) where downstream pressure is 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR], (150 kPa) setpoint

Maximum Signal or Output Pressure

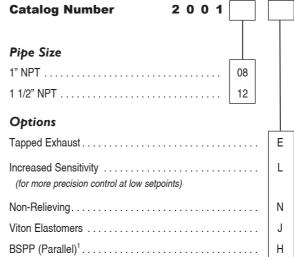
150 psig, [10 BAR], (1000 kPa)

Supply Pressure Effect

Less than 0.5 psig, [.035 BAR], (3.5 kPa) for 100 psig, [7.0 BAR], (700 kPa) change in supply pressure

Sensitivity

1" (2.54 cm) Water Column


Ambient Temperature

-40°F to +200°F, (-40°C to 93.3°C)

Materials of Construction

Body and Housing	Aluminum
Trim	Aluminum, Stainless Steel,
	Zinc Plated Steel, Brass
Diaphragms	Nitrile on Dacron

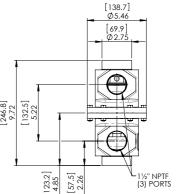
Catalog Information

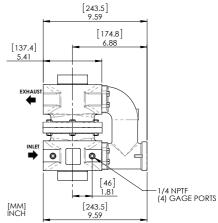
¹ BSPP Threads in Inlet and Outlet Ports Only. Others BSPT.

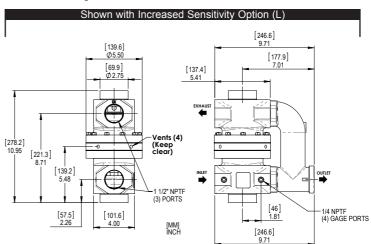
Service Kit

For installation instructions, refer to the Fairchild Model 200 Pneumatic Volume Booster Installation, Operation and Maintenance Instructions, IS-20000200.


- The 200XLR Pneumatic Volume Booster produces a pneumatic signal in a 1:1 ratio, ideally suited for input isolation systems.
- Control sensitivity to 1" water column variation (Increased Sensitivity ("L") option for more precision control at low setpoints.)
- Large supply and Exhaust Valves provide high forward and exhaust flows
- An Aspirator Tube minimizes downstream pressure droop under flow conditions.
- Separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing
- Optional Adjustable By-Pass Needle Valve includes bubble tight exhaust valve allows tuning for optimum dynamic response and cycle free operation with valve positioners
- Canadian Registration Number (CRN)
 Certification for all territories and provinces


Operating Principles


When signal pressure on the top of the signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the downward force of the signal pressure that acts on the top of the Signal Diaphragm balances with the upward force of the output pressure that acts on the bottom of the Control Diaphragm.


When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Excess output pressure exhausts through

the Exhaust Port until it reaches the setpoint.

Model 200XLR Pneumatic Volume Booster

Specifications

Flow Capacity (SCFM)

In excess of 1500 (2550 m 3 /hr) @ 100 psig, [7.0 BAR], (700 kPa) supply and 20 psig, [1.5 BAR], (1500 kPa) setpoint

Exhaust Capacity (SCFM)

325 (552.5 m $^{\rm 3}$ /hr) where downstream pressure is 5 psig, [.35 BAR], (35 kPa) above 20 psig, [1.5 BAR], (150 kPa) setpoint

Supply Pressure

250 psig, [17.0 BAR], (1700 kPa) Maximum

Supply Pressure Effect

Less than 0.5 psig, [.03 BAR], (3.4 kPa) for 100 psig, [7.0 BAR], (700 kPa) change in supply pressure

Signal or Output Pressure

150 psig, [10.0 BAR], (1000 kPa) Maximum

Sensitivity

1" (2.54 cm) Water Column

Ambient Temperature

-40°F to +200° F, (-40°C to +93° C)

Materials of Construction

Body and Housing	Die Cast Aluminum
Trim	Stainless Steel, Brass, Aluminum,
	and Zinc Plated Steel
Diaphragms	Nitrile on Dacron

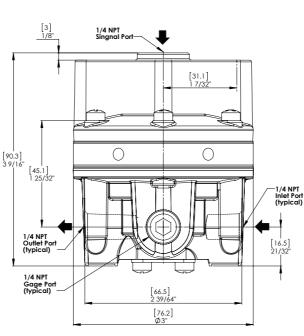
Catalog Information

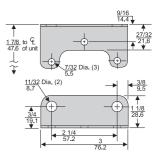
Catalog Number	2001	XLR	
Pipe Size	T	ı	
1 1/2" NPT			
Options			
By Pass Valve			ı
Fluorocarbon (Viton) Elastomer	rs		J
Increased Sensitivity			L
(for more precision control at	low setpoints)		

Installation

For installation instructions, refer to the Fairchild Model 200XLR Pneumatic Volume Booster Installation, Operation and Maintenance Instructions, IS-20200XLR.

- The Model 20BP Pneumatic High Capacity Back Pressure Booster uses a pneumatic input signal to accurately control output pressure
- Aspirator Tube compensates pressure droop under flowing conditions
- A separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing
- Unit construction allows servicing without removal
- · Mounting Bracket available
- Canadian Registration Number (CRN)
 Certification for all territories and provinces

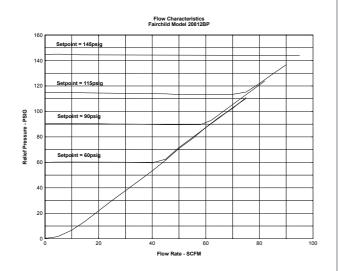

DIAPHRAGM ASSEMBLY SEAL VALVE SEAT OUTLET PORT NILET PORT


Operating Principles

The Model 20BP Back Pressure Booster is a pneumatic device capable of high flow capacity. This device uses a force balance system to open the relief valve and vent system pressure when the set point is exceeded.

When system pressure increase, the force on the bottom of the Diaphragm Assembly increase until it reaches the set point. When system pressure increases beyond the set point, the assembly moves upward, lifting the Relief Valve from its seat and vents the system air.

If system pressure decreases below the set point, the assembly moves downward closing the Relief Valve.



Model 20 Mounting Bracket Kit P/N 09921 (Zinc Plated Steel) (sold separately)

Catalog Information

Catalog Number	208	BP
Ratio	I	T
1:1	1	
Pipe Size		
1/4" NPT		2
3/8" NPT		3
1/2" NPT		4
Options		
Silicone Elastomers ¹		A
BSPP (Parallel) ²		H
Viton Elastomers		
BSPT (Tapered)		U

- ¹ Maximum Pressure 75 psig, [5.0 BAR], (500 kPa). ² BSPP Threads in Inlet,Outlet, Bonnet & Exhaust Ports Only. Others BSPT.

Specifications

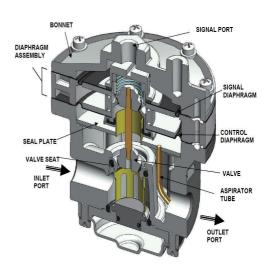
SIGNAL:OUTPUT	(1:1 Ratio)	
Maximum Signal Pressure	150 psig [10.0 BAR] 1000kPa	
Maximum System Pressure	250psig [17.0BAR] 1700kPa	
Flow Capacity SCFM,		
@100 psig, [7.0 BAR],	60 SCFM (101.9 m ³ /HR)	
(700 kPa) System Pressure		
Sensitivity	1/4"	
(water column)	(.64 cm)	
Ratio Accuracy		
% of 100 psig, [7.0 BAR], (700 kPa) Input span	1.0	
Ambient Temperature	-40 °F to 200 °F, (-40 °C to 93.3°C)	

Hazardous Locations

Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups IIA and IIB and Zones 21 and 22 for dust atmospheres

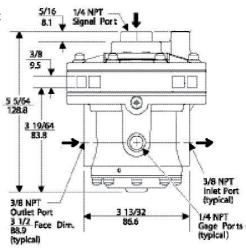
Materials of Construction

Body & Housing	Aluminum
Trim Zinc Plated S	teel, Brass
Diaphragm Nitrile on Dacron Fa	abric


Installation

For installation instructions, refer to the Fairchild Installation, Operation and Maintenance Instructions.

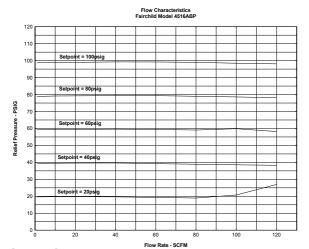
- Control sensitivity of 1" water column allows use in precision applications.
- Large Exhaust Valve provides high exhaust flows.
- An Aspirator Tube compensates pressure droop under flow conditions.
- A separate Control Chamber isolates the diaphragm from the main flow to eliminate hunting and buzzing.
- Unit construction lets you service the Model 4500ABP without removing it from the line.



4500ABP

Operating Principles

The Model 4500ABP Booster is a pneumatic device capable of high flow capacity. This device uses a force balance system to open the relief valve and vent system pressure when set point is exceeded. When system pressure increases, the force on the bottom of the Diaphragm Assembly increases beyond the set point, the assembly moves upward, lifting the Relief Valve from its seat and vents the system air.


If system pressure decreases below the set point, the assembly moves downward closing the Relief Valve.

Model 4500ABP Pneumatic Back Pressure Booster

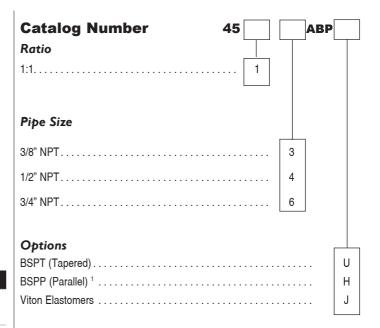
Technical Information

Specifications

	RATIO	1:1	
Maximum Signal Pressure	psig [BAR] (kPa)	150 [10.0] (1000)	
Maximum System Pressure	psig [BAR] (kPa)	250 [17.0] (1700)	
Flow Capacity AT 100 psig, [7.0 BA 700 kPa) System Pr		150 (255)	
Sensitivity Water Column	(cm)	1" (2.54)	
Ratio Accuracy % of 100 psig, [7.00 kPa) input sp		3.0	

Ambient Temperature

-40°F to 200°F, (-40°C to 93.3°C)

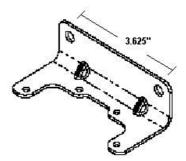

Hazardous Locations

Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups IIA and IIB and Zones 21 and 22 for dust atmospheres

Materials of Construction

Body and Housing	 Aluminum
Trim	
Diaphragm	 Nitrile on Dacron

Catalog Information



¹ BSPP Threads in Inlet, Outlet, Exhaust & Bonnet Ports Only. Others BSPT

Installation

For installations instructions, refer to the corresponding Fairchild Model 4500ABP Pneumatic Volume Booster Instruction, Operation and Maintenance Instructions.

Model 4500ABP Mounting Bracket Kit P/N 20555-1 zinc plated (sold separately)

